metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C24.65D10, C23.28D20, (C2×C20)⋊35D4, (C23×C4)⋊1D5, (C23×C20)⋊1C2, C10.115(C4×D4), C23.38(C4×D5), C10.70C22≀C2, C2.5(C20⋊7D4), C22.61(C2×D20), C10.80(C4⋊D4), (C22×C10).193D4, (C22×C4).408D10, C2.2(C24⋊2D5), C23.83(C5⋊D4), C5⋊5(C23.23D4), C22⋊2(D10⋊C4), C22.64(C4○D20), (C23×D5).24C22, C23.304(C22×D5), C10.10C42⋊25C2, (C22×C20).485C22, (C23×C10).100C22, (C22×C10).364C23, C10.69(C22.D4), C2.5(C23.23D10), (C22×Dic5).67C22, (C2×C5⋊D4)⋊12C4, C2.29(C4×C5⋊D4), (C2×C4)⋊15(C5⋊D4), (C22×D5)⋊7(C2×C4), (C2×C23.D5)⋊7C2, C22.150(C2×C4×D5), (C2×C10)⋊8(C22⋊C4), (C2×Dic5)⋊11(C2×C4), (C2×C10).550(C2×D4), (C2×D10⋊C4)⋊11C2, (C22×C5⋊D4).7C2, C22.88(C2×C5⋊D4), (C2×C10).92(C4○D4), C2.36(C2×D10⋊C4), C10.106(C2×C22⋊C4), (C2×C10).244(C22×C4), (C22×C10).168(C2×C4), SmallGroup(320,840)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C24.65D10
G = < a,b,c,d,e | a2=b2=c2=d20=1, e2=b, ab=ba, eae-1=ac=ca, ad=da, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede-1=bd-1 >
Subgroups: 1022 in 286 conjugacy classes, 87 normal (25 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C5, C2×C4, C2×C4, D4, C23, C23, C23, D5, C10, C10, C10, C22⋊C4, C22×C4, C22×C4, C2×D4, C24, C24, Dic5, C20, D10, C2×C10, C2×C10, C2×C10, C2.C42, C2×C22⋊C4, C23×C4, C22×D4, C2×Dic5, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C22×D5, C22×D5, C22×C10, C22×C10, C22×C10, C23.23D4, D10⋊C4, C23.D5, C22×Dic5, C22×Dic5, C2×C5⋊D4, C2×C5⋊D4, C22×C20, C22×C20, C23×D5, C23×C10, C10.10C42, C2×D10⋊C4, C2×C23.D5, C22×C5⋊D4, C23×C20, C24.65D10
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D5, C22⋊C4, C22×C4, C2×D4, C4○D4, D10, C2×C22⋊C4, C4×D4, C22≀C2, C4⋊D4, C22.D4, C4×D5, D20, C5⋊D4, C22×D5, C23.23D4, D10⋊C4, C2×C4×D5, C2×D20, C4○D20, C2×C5⋊D4, C2×D10⋊C4, C4×C5⋊D4, C23.23D10, C20⋊7D4, C24⋊2D5, C24.65D10
(1 139)(2 140)(3 121)(4 122)(5 123)(6 124)(7 125)(8 126)(9 127)(10 128)(11 129)(12 130)(13 131)(14 132)(15 133)(16 134)(17 135)(18 136)(19 137)(20 138)(21 94)(22 95)(23 96)(24 97)(25 98)(26 99)(27 100)(28 81)(29 82)(30 83)(31 84)(32 85)(33 86)(34 87)(35 88)(36 89)(37 90)(38 91)(39 92)(40 93)(41 66)(42 67)(43 68)(44 69)(45 70)(46 71)(47 72)(48 73)(49 74)(50 75)(51 76)(52 77)(53 78)(54 79)(55 80)(56 61)(57 62)(58 63)(59 64)(60 65)(101 155)(102 156)(103 157)(104 158)(105 159)(106 160)(107 141)(108 142)(109 143)(110 144)(111 145)(112 146)(113 147)(114 148)(115 149)(116 150)(117 151)(118 152)(119 153)(120 154)
(1 44)(2 45)(3 46)(4 47)(5 48)(6 49)(7 50)(8 51)(9 52)(10 53)(11 54)(12 55)(13 56)(14 57)(15 58)(16 59)(17 60)(18 41)(19 42)(20 43)(21 101)(22 102)(23 103)(24 104)(25 105)(26 106)(27 107)(28 108)(29 109)(30 110)(31 111)(32 112)(33 113)(34 114)(35 115)(36 116)(37 117)(38 118)(39 119)(40 120)(61 131)(62 132)(63 133)(64 134)(65 135)(66 136)(67 137)(68 138)(69 139)(70 140)(71 121)(72 122)(73 123)(74 124)(75 125)(76 126)(77 127)(78 128)(79 129)(80 130)(81 142)(82 143)(83 144)(84 145)(85 146)(86 147)(87 148)(88 149)(89 150)(90 151)(91 152)(92 153)(93 154)(94 155)(95 156)(96 157)(97 158)(98 159)(99 160)(100 141)
(1 143)(2 144)(3 145)(4 146)(5 147)(6 148)(7 149)(8 150)(9 151)(10 152)(11 153)(12 154)(13 155)(14 156)(15 157)(16 158)(17 159)(18 160)(19 141)(20 142)(21 61)(22 62)(23 63)(24 64)(25 65)(26 66)(27 67)(28 68)(29 69)(30 70)(31 71)(32 72)(33 73)(34 74)(35 75)(36 76)(37 77)(38 78)(39 79)(40 80)(41 99)(42 100)(43 81)(44 82)(45 83)(46 84)(47 85)(48 86)(49 87)(50 88)(51 89)(52 90)(53 91)(54 92)(55 93)(56 94)(57 95)(58 96)(59 97)(60 98)(101 131)(102 132)(103 133)(104 134)(105 135)(106 136)(107 137)(108 138)(109 139)(110 140)(111 121)(112 122)(113 123)(114 124)(115 125)(116 126)(117 127)(118 128)(119 129)(120 130)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 43 44 20)(2 19 45 42)(3 41 46 18)(4 17 47 60)(5 59 48 16)(6 15 49 58)(7 57 50 14)(8 13 51 56)(9 55 52 12)(10 11 53 54)(21 126 101 76)(22 75 102 125)(23 124 103 74)(24 73 104 123)(25 122 105 72)(26 71 106 121)(27 140 107 70)(28 69 108 139)(29 138 109 68)(30 67 110 137)(31 136 111 66)(32 65 112 135)(33 134 113 64)(34 63 114 133)(35 132 115 62)(36 61 116 131)(37 130 117 80)(38 79 118 129)(39 128 119 78)(40 77 120 127)(81 82 142 143)(83 100 144 141)(84 160 145 99)(85 98 146 159)(86 158 147 97)(87 96 148 157)(88 156 149 95)(89 94 150 155)(90 154 151 93)(91 92 152 153)
G:=sub<Sym(160)| (1,139)(2,140)(3,121)(4,122)(5,123)(6,124)(7,125)(8,126)(9,127)(10,128)(11,129)(12,130)(13,131)(14,132)(15,133)(16,134)(17,135)(18,136)(19,137)(20,138)(21,94)(22,95)(23,96)(24,97)(25,98)(26,99)(27,100)(28,81)(29,82)(30,83)(31,84)(32,85)(33,86)(34,87)(35,88)(36,89)(37,90)(38,91)(39,92)(40,93)(41,66)(42,67)(43,68)(44,69)(45,70)(46,71)(47,72)(48,73)(49,74)(50,75)(51,76)(52,77)(53,78)(54,79)(55,80)(56,61)(57,62)(58,63)(59,64)(60,65)(101,155)(102,156)(103,157)(104,158)(105,159)(106,160)(107,141)(108,142)(109,143)(110,144)(111,145)(112,146)(113,147)(114,148)(115,149)(116,150)(117,151)(118,152)(119,153)(120,154), (1,44)(2,45)(3,46)(4,47)(5,48)(6,49)(7,50)(8,51)(9,52)(10,53)(11,54)(12,55)(13,56)(14,57)(15,58)(16,59)(17,60)(18,41)(19,42)(20,43)(21,101)(22,102)(23,103)(24,104)(25,105)(26,106)(27,107)(28,108)(29,109)(30,110)(31,111)(32,112)(33,113)(34,114)(35,115)(36,116)(37,117)(38,118)(39,119)(40,120)(61,131)(62,132)(63,133)(64,134)(65,135)(66,136)(67,137)(68,138)(69,139)(70,140)(71,121)(72,122)(73,123)(74,124)(75,125)(76,126)(77,127)(78,128)(79,129)(80,130)(81,142)(82,143)(83,144)(84,145)(85,146)(86,147)(87,148)(88,149)(89,150)(90,151)(91,152)(92,153)(93,154)(94,155)(95,156)(96,157)(97,158)(98,159)(99,160)(100,141), (1,143)(2,144)(3,145)(4,146)(5,147)(6,148)(7,149)(8,150)(9,151)(10,152)(11,153)(12,154)(13,155)(14,156)(15,157)(16,158)(17,159)(18,160)(19,141)(20,142)(21,61)(22,62)(23,63)(24,64)(25,65)(26,66)(27,67)(28,68)(29,69)(30,70)(31,71)(32,72)(33,73)(34,74)(35,75)(36,76)(37,77)(38,78)(39,79)(40,80)(41,99)(42,100)(43,81)(44,82)(45,83)(46,84)(47,85)(48,86)(49,87)(50,88)(51,89)(52,90)(53,91)(54,92)(55,93)(56,94)(57,95)(58,96)(59,97)(60,98)(101,131)(102,132)(103,133)(104,134)(105,135)(106,136)(107,137)(108,138)(109,139)(110,140)(111,121)(112,122)(113,123)(114,124)(115,125)(116,126)(117,127)(118,128)(119,129)(120,130), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,43,44,20)(2,19,45,42)(3,41,46,18)(4,17,47,60)(5,59,48,16)(6,15,49,58)(7,57,50,14)(8,13,51,56)(9,55,52,12)(10,11,53,54)(21,126,101,76)(22,75,102,125)(23,124,103,74)(24,73,104,123)(25,122,105,72)(26,71,106,121)(27,140,107,70)(28,69,108,139)(29,138,109,68)(30,67,110,137)(31,136,111,66)(32,65,112,135)(33,134,113,64)(34,63,114,133)(35,132,115,62)(36,61,116,131)(37,130,117,80)(38,79,118,129)(39,128,119,78)(40,77,120,127)(81,82,142,143)(83,100,144,141)(84,160,145,99)(85,98,146,159)(86,158,147,97)(87,96,148,157)(88,156,149,95)(89,94,150,155)(90,154,151,93)(91,92,152,153)>;
G:=Group( (1,139)(2,140)(3,121)(4,122)(5,123)(6,124)(7,125)(8,126)(9,127)(10,128)(11,129)(12,130)(13,131)(14,132)(15,133)(16,134)(17,135)(18,136)(19,137)(20,138)(21,94)(22,95)(23,96)(24,97)(25,98)(26,99)(27,100)(28,81)(29,82)(30,83)(31,84)(32,85)(33,86)(34,87)(35,88)(36,89)(37,90)(38,91)(39,92)(40,93)(41,66)(42,67)(43,68)(44,69)(45,70)(46,71)(47,72)(48,73)(49,74)(50,75)(51,76)(52,77)(53,78)(54,79)(55,80)(56,61)(57,62)(58,63)(59,64)(60,65)(101,155)(102,156)(103,157)(104,158)(105,159)(106,160)(107,141)(108,142)(109,143)(110,144)(111,145)(112,146)(113,147)(114,148)(115,149)(116,150)(117,151)(118,152)(119,153)(120,154), (1,44)(2,45)(3,46)(4,47)(5,48)(6,49)(7,50)(8,51)(9,52)(10,53)(11,54)(12,55)(13,56)(14,57)(15,58)(16,59)(17,60)(18,41)(19,42)(20,43)(21,101)(22,102)(23,103)(24,104)(25,105)(26,106)(27,107)(28,108)(29,109)(30,110)(31,111)(32,112)(33,113)(34,114)(35,115)(36,116)(37,117)(38,118)(39,119)(40,120)(61,131)(62,132)(63,133)(64,134)(65,135)(66,136)(67,137)(68,138)(69,139)(70,140)(71,121)(72,122)(73,123)(74,124)(75,125)(76,126)(77,127)(78,128)(79,129)(80,130)(81,142)(82,143)(83,144)(84,145)(85,146)(86,147)(87,148)(88,149)(89,150)(90,151)(91,152)(92,153)(93,154)(94,155)(95,156)(96,157)(97,158)(98,159)(99,160)(100,141), (1,143)(2,144)(3,145)(4,146)(5,147)(6,148)(7,149)(8,150)(9,151)(10,152)(11,153)(12,154)(13,155)(14,156)(15,157)(16,158)(17,159)(18,160)(19,141)(20,142)(21,61)(22,62)(23,63)(24,64)(25,65)(26,66)(27,67)(28,68)(29,69)(30,70)(31,71)(32,72)(33,73)(34,74)(35,75)(36,76)(37,77)(38,78)(39,79)(40,80)(41,99)(42,100)(43,81)(44,82)(45,83)(46,84)(47,85)(48,86)(49,87)(50,88)(51,89)(52,90)(53,91)(54,92)(55,93)(56,94)(57,95)(58,96)(59,97)(60,98)(101,131)(102,132)(103,133)(104,134)(105,135)(106,136)(107,137)(108,138)(109,139)(110,140)(111,121)(112,122)(113,123)(114,124)(115,125)(116,126)(117,127)(118,128)(119,129)(120,130), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,43,44,20)(2,19,45,42)(3,41,46,18)(4,17,47,60)(5,59,48,16)(6,15,49,58)(7,57,50,14)(8,13,51,56)(9,55,52,12)(10,11,53,54)(21,126,101,76)(22,75,102,125)(23,124,103,74)(24,73,104,123)(25,122,105,72)(26,71,106,121)(27,140,107,70)(28,69,108,139)(29,138,109,68)(30,67,110,137)(31,136,111,66)(32,65,112,135)(33,134,113,64)(34,63,114,133)(35,132,115,62)(36,61,116,131)(37,130,117,80)(38,79,118,129)(39,128,119,78)(40,77,120,127)(81,82,142,143)(83,100,144,141)(84,160,145,99)(85,98,146,159)(86,158,147,97)(87,96,148,157)(88,156,149,95)(89,94,150,155)(90,154,151,93)(91,92,152,153) );
G=PermutationGroup([[(1,139),(2,140),(3,121),(4,122),(5,123),(6,124),(7,125),(8,126),(9,127),(10,128),(11,129),(12,130),(13,131),(14,132),(15,133),(16,134),(17,135),(18,136),(19,137),(20,138),(21,94),(22,95),(23,96),(24,97),(25,98),(26,99),(27,100),(28,81),(29,82),(30,83),(31,84),(32,85),(33,86),(34,87),(35,88),(36,89),(37,90),(38,91),(39,92),(40,93),(41,66),(42,67),(43,68),(44,69),(45,70),(46,71),(47,72),(48,73),(49,74),(50,75),(51,76),(52,77),(53,78),(54,79),(55,80),(56,61),(57,62),(58,63),(59,64),(60,65),(101,155),(102,156),(103,157),(104,158),(105,159),(106,160),(107,141),(108,142),(109,143),(110,144),(111,145),(112,146),(113,147),(114,148),(115,149),(116,150),(117,151),(118,152),(119,153),(120,154)], [(1,44),(2,45),(3,46),(4,47),(5,48),(6,49),(7,50),(8,51),(9,52),(10,53),(11,54),(12,55),(13,56),(14,57),(15,58),(16,59),(17,60),(18,41),(19,42),(20,43),(21,101),(22,102),(23,103),(24,104),(25,105),(26,106),(27,107),(28,108),(29,109),(30,110),(31,111),(32,112),(33,113),(34,114),(35,115),(36,116),(37,117),(38,118),(39,119),(40,120),(61,131),(62,132),(63,133),(64,134),(65,135),(66,136),(67,137),(68,138),(69,139),(70,140),(71,121),(72,122),(73,123),(74,124),(75,125),(76,126),(77,127),(78,128),(79,129),(80,130),(81,142),(82,143),(83,144),(84,145),(85,146),(86,147),(87,148),(88,149),(89,150),(90,151),(91,152),(92,153),(93,154),(94,155),(95,156),(96,157),(97,158),(98,159),(99,160),(100,141)], [(1,143),(2,144),(3,145),(4,146),(5,147),(6,148),(7,149),(8,150),(9,151),(10,152),(11,153),(12,154),(13,155),(14,156),(15,157),(16,158),(17,159),(18,160),(19,141),(20,142),(21,61),(22,62),(23,63),(24,64),(25,65),(26,66),(27,67),(28,68),(29,69),(30,70),(31,71),(32,72),(33,73),(34,74),(35,75),(36,76),(37,77),(38,78),(39,79),(40,80),(41,99),(42,100),(43,81),(44,82),(45,83),(46,84),(47,85),(48,86),(49,87),(50,88),(51,89),(52,90),(53,91),(54,92),(55,93),(56,94),(57,95),(58,96),(59,97),(60,98),(101,131),(102,132),(103,133),(104,134),(105,135),(106,136),(107,137),(108,138),(109,139),(110,140),(111,121),(112,122),(113,123),(114,124),(115,125),(116,126),(117,127),(118,128),(119,129),(120,130)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,43,44,20),(2,19,45,42),(3,41,46,18),(4,17,47,60),(5,59,48,16),(6,15,49,58),(7,57,50,14),(8,13,51,56),(9,55,52,12),(10,11,53,54),(21,126,101,76),(22,75,102,125),(23,124,103,74),(24,73,104,123),(25,122,105,72),(26,71,106,121),(27,140,107,70),(28,69,108,139),(29,138,109,68),(30,67,110,137),(31,136,111,66),(32,65,112,135),(33,134,113,64),(34,63,114,133),(35,132,115,62),(36,61,116,131),(37,130,117,80),(38,79,118,129),(39,128,119,78),(40,77,120,127),(81,82,142,143),(83,100,144,141),(84,160,145,99),(85,98,146,159),(86,158,147,97),(87,96,148,157),(88,156,149,95),(89,94,150,155),(90,154,151,93),(91,92,152,153)]])
92 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 2L | 2M | 4A | ··· | 4H | 4I | ··· | 4N | 5A | 5B | 10A | ··· | 10AD | 20A | ··· | 20AF |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 5 | 5 | 10 | ··· | 10 | 20 | ··· | 20 |
size | 1 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 20 | 20 | 2 | ··· | 2 | 20 | ··· | 20 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
92 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | + | + | + | + | ||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C4 | D4 | D4 | D5 | C4○D4 | D10 | D10 | C5⋊D4 | C4×D5 | D20 | C5⋊D4 | C4○D20 |
kernel | C24.65D10 | C10.10C42 | C2×D10⋊C4 | C2×C23.D5 | C22×C5⋊D4 | C23×C20 | C2×C5⋊D4 | C2×C20 | C22×C10 | C23×C4 | C2×C10 | C22×C4 | C24 | C2×C4 | C23 | C23 | C23 | C22 |
# reps | 1 | 2 | 2 | 1 | 1 | 1 | 8 | 4 | 4 | 2 | 4 | 4 | 2 | 16 | 8 | 8 | 8 | 16 |
Matrix representation of C24.65D10 ►in GL6(𝔽41)
23 | 6 | 0 | 0 | 0 | 0 |
35 | 18 | 0 | 0 | 0 | 0 |
0 | 0 | 23 | 6 | 0 | 0 |
0 | 0 | 35 | 18 | 0 | 0 |
0 | 0 | 0 | 0 | 18 | 1 |
0 | 0 | 0 | 0 | 5 | 23 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
0 | 40 | 0 | 0 | 0 | 0 |
1 | 35 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 9 | 0 | 0 |
0 | 0 | 32 | 13 | 0 | 0 |
0 | 0 | 0 | 0 | 25 | 11 |
0 | 0 | 0 | 0 | 14 | 39 |
0 | 40 | 0 | 0 | 0 | 0 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 9 | 0 | 0 |
0 | 0 | 9 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 11 |
0 | 0 | 0 | 0 | 37 | 39 |
G:=sub<GL(6,GF(41))| [23,35,0,0,0,0,6,18,0,0,0,0,0,0,23,35,0,0,0,0,6,18,0,0,0,0,0,0,18,5,0,0,0,0,1,23],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[0,1,0,0,0,0,40,35,0,0,0,0,0,0,0,32,0,0,0,0,9,13,0,0,0,0,0,0,25,14,0,0,0,0,11,39],[0,40,0,0,0,0,40,0,0,0,0,0,0,0,0,9,0,0,0,0,9,0,0,0,0,0,0,0,2,37,0,0,0,0,11,39] >;
C24.65D10 in GAP, Magma, Sage, TeX
C_2^4._{65}D_{10}
% in TeX
G:=Group("C2^4.65D10");
// GroupNames label
G:=SmallGroup(320,840);
// by ID
G=gap.SmallGroup(320,840);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,253,758,58,12550]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^20=1,e^2=b,a*b=b*a,e*a*e^-1=a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=b*d^-1>;
// generators/relations